Kleptographic Attacks on E-Auction Schemes

M. Gogolewski1, M. Gomułkiewicz2, J. Grząślewicz2, P. Kubiak2, M. Kutyłowski2, A. Lauks2

1. Faculty of Mathematics and Computer Science, Adam Mickiewicz University
2. Institute of Mathematics and Computer Science, Wrocław University of Technology

ACNS 2007, Zhuhai, China
Outline

1. Motivation
2. Kleptography
3. e-Auction Protocols
 - Harkavy, Tygar and Kikuchi’s scheme
 - Omote and Miyaji’s scheme
 - Wang and Leung’s scheme, Trevathan, Ghodosi and Read’s scheme
4. Attack
 - Types of attack
 - Example
5. Conclusions
Outline

1. Motivation
2. Kleptography
3. e-Auction Protocols
 - Harkavy, Tygar and Kikuchi’s scheme
 - Omote and Miyaji’s scheme
 - Wang and Leung’s scheme, Trevathan, Ghodosi and Read’s scheme
4. Attack
 - Types of attack
 - Example
5. Conclusions
Motivation

1. **Project:** e-Auction Platform
 - project goal – to build an integrated e-auction platform
 - team goal – to find or build a secure, trustworthy e-auction protocol

2. **Observation:** there is a lot not controlled at protocol level randomness
 - randomness opens the door to kleptographic attacks
Outline

1. Motivation
2. Kleptography
3. e-Auction Protocols
 - Harkavy, Tygar and Kikuchi’s scheme
 - Omote and Miyaji’s scheme
 - Wang and Leung’s scheme, Trevathan, Ghodosi and Read’s scheme
4. Attack
 - Types of attack
 - Example
5. Conclusions
Kleptography

- introduced by Adam Young and Moti Yung
- called - dark side of cryptography
- a technique of embedding a trapdoor in a black box cryptosystem by the manufacturer that leaks user’s private values
Kleptographic attacks – properties

- the system works according to its specification
- only manufacturer (Mallet) can get the leaking values:
 - kleptographic channel encrypted with his public key
 - the analysis of infected cryptosystem does not give access to the values send by the kleptographic channel
- possible way of detection:
 - reverse engineering - may be costly
Outline

1. Motivation
2. Kleptography
3. e-Auction Protocols
 - Harkavy, Tygar and Kikuchi’s scheme
 - Omote and Miyaji’s scheme
 - Wang and Leung’s scheme, Trevathan, Ghodosi and Read’s scheme
4. Attack
 - Types of attack
 - Example
5. Conclusions
Analyzed protocols

Harkavy, Tygar and Kikuchi’s scheme

- sealed bid auction protocol:
 - one seller, many bidders
 - bids are submitted simultaneously
 - bids should remain hidden until the bidding period is closed

Possible leak of bid values
Analyzed protocols

Omote and Miyaji’s scheme

- English auction protocol:
 - one seller, many bidders
 - bids are known to all bidders during the bidding period
 - price is pushed up by the bidders until nobody is ready to bid higher or the bidding period is closed

Possible leak of:
1. profiles of all registered users
2. secret exponents of the users (necessary for making a bid)
Analyzed protocols

Wang and Leung’s scheme, Trevathan, Ghodosi and Read’s scheme

- continuous double auction protocol:
 - many sellers, many bidders
 - bids are known during the bidding period
 - buyers and sellers submit bids for sale and purchase of a single commodity
Continuous double auctions concerned

Attack on signature schemes used in bidding process:

1. RSA – improvement of [1] – using the single elliptic curve over a prime field to key generation gives shorter key than in case of a twisted pair of elliptic curves over a binary field.

 1. all data necessary to forge the bidder’s group’s member signature
 2. profile of the bidder

Outline

1. Motivation
2. Kleptography
3. e-Auction Protocols
 - Harkavy, Tygar and Kikuchi’s scheme
 - Omote and Miyaji’s scheme
 - Wang and Leung’s scheme, Trevathan, Ghodosi and Read’s scheme
4. Attack
 - Types of attack
 - Example
5. Conclusions

A. Lauks

Kleptographic Attacks on E-Auction Schemes
Different types of attack

Software oriented attack

Assumptions:
- software does not share any individual secret with Mallet
- access to Mallet public key is required

Hardware oriented attack

Assumption:
- device and Mallet share some unique secret key K
- non-volatile rewritable memory
- tampered-resistant or tampered-evident device
Attack on Bidder - Omote and Miyaji’s scheme
Assumptions

- hardware attack – device contains some unique key K set by Mallet
- Mallet does not have to eavesdrop any communication – he uses only publicly known values
Part of the e-auction scheme used

- to make a bid \(m_i \), the bidder \(B_i \):
 - uses \(g_{ri} \) and \(y_{ri} \) published by Auction Manager
 - must show a signature of knowledge of his/her secret exponent \(x_i \) – pair \((c, s) \) such that:
 \[
 c = h(m_i \| y_{ri} \| g_{ri} \| (g_{ri})^s \cdot (y_{ri})^c)
 \]
 where \(h \) is a hash function
 - to determine \((c, s) \), a bidder which knows \(x_i \) such that \(y_i = g^{x_i} \):
 - chooses at random some \(R \)
 - sets:
 \[
 c = h(m_i \| y_{ri} \| g_{ri} \| (g_{ri})^R) \\
 s = R - cx_i
 \]
Part of the e-auction scheme used

\[
c = h(m_i \| y_i^{r_i} \| g_i^{r_i} \| (g_i^{r_i})^s \cdot (y_i^{r_i})^c) \quad (1)
\]
\[
c = h(m_i \| y_i^{r_i} \| g_i^{r_i} \| (g_i^{r_i})^R) \quad (2)
\]
\[
s = R - cx_i
\]

- signature is publicly verifiable
- anyone might obtain

\[
(g_i^{r_i})^R = (g_i^{r_i})^s \cdot (y_i^{r_i})^c
\]
In the device:

- let the exponent R be obtained from $\mathcal{R}(H(K))$ where:
 \mathcal{R} – pseudorandom bit generator with a seed $H(K)$
 H – hash function
 K – some unique key set by Mallet

- After transmitting the bid the key is changed:
 $K := \tilde{H}(K)$ for $\tilde{H} \neq H$
Attack

Mallet:

1. tries to identify a device
 - gets the bid’s signature - \((c, s)\) and computes
 \[
 (g^{r_i})^R = (g^{r_i})^s \cdot (y_i^{r_i})^c
 \]
 - having a database of initial values of keys \(K\) performs series of substitutions \(K := \tilde{H}(K)\)
 - for each \(K\) gets the candidate \(R'\) for random number \(R\) and checks if \((g^{r_i})^R = (g^{r_i})^{R'}\)

2. having \(R\) gets the user’s secret exponent \(x_i\) using the equation:
 \[
 s = R - cx_i
 \]
Outline

1. Motivation
2. Kleptography
3. e-Auction Protocols
 - Harkavy, Tygar and Kikuchi’s scheme
 - Omote and Miyaji’s scheme
 - Wang and Leung’s scheme, Trevathan, Ghodosi and Read’s scheme
4. Attack
 - Types of attack
 - Example
5. Conclusions

A. Lauks
Kleptographic Attacks on E-Auction Schemes
Conclusions

- distributed trust might reduce the feasibility of kleptographic attacks

- **verifiable pseudorandomness** – output of a device should be verifiable to his owner and simultaneously completely unpredictable for others

\[r = \mathcal{R}(\text{sig}_K(h(q))) \]

where:
- \(\mathcal{R} \) – pseudorandom bit generator
- \(\text{sig} \) – deterministic signature scheme
- \(K \) – signing key loaded to the device by its owner
- \(h \) – strong hash function
- \(q \) – unique number set by the owner
Thank you for attention