Introduction

- Model
 - wireless sensor network
 - multi-hop
 - severely constrained devices
- Goal
 - providing confidentiality of transmitted message
- Problems
 - devices can be captured by adversary
 - all secrets stored can be accessed easily
- Solution
 - message partition
 - routing algorithm
 - adversary needs to capture specific subset of nodes to learn the message

Protocol

- Initialization
 - source splits M into I parts, and sends them to I nodes in next layer
- Step
 - each of I devices splits the message part again into I parts and sends them to I devices in next layer
 - each device chooses the same I devices to send the message to (See Routing).
- at each layer, a subset of I nodes participates in message M transmission
 - I is a protocol (forking) parameter
 - there are I^2 message parts traveling between each layer

Model

![Exemplary distribution of nodes and layers](image)

- layered structure (possibly constructed ad-hoc)
 - L_1, L_2, \ldots, L_t
 - assuming no overlaps
 - assuming n devices in each layer
 - each pair of nodes in consecutive layers share a symmetric key
 - nodes in consecutive layers are in transmission range of each other

Adversary

- wants to learn the message transmitted through the network
- can capture some devices
- can eavesdrop communication in the network
- can retrieve all information stored on captured device

Protocol: Message Partition

- Initialization
 - source chooses r at random and sends it to I devices in next layer
 - the devices basing on r determine set of receivers in next layer
- Step
 - each device generates new random value r' and sends it along with its I message parts
 - each device in the following layer has the same set of I, r' and can determine receivers in next layer

Protocol: Routing

- Initialization
 - each layer, a subset of I nodes participates in message M transmission

Attack scenarios

- Nonadaptive Attack
 - Adversary chooses devices before transmission
- Random Attack
 - Adversary chooses devices at random (e.g. trying to locate them in grass)
- Adaptive attack
 - Nodes chosen after transmission

Security analysis

- Nonadaptive Attack
 - It is optimal for the adversary to choose devices from one layer
 - Theorem: Corrupting nodes from one layer adversary chance for learning the message for $I \leq K < n$ is $\binom{n}{I}/\binom{n}{I}$
- Random Attack
 - Theorem: Chance for learning the message is
 \[
 S_n = \sum_{i=1}^{I} (-1)^{i+1} \binom{I}{i} \binom{K}{i} < \frac{1}{2} \left(1 + \frac{1}{p} \right)^I - \left(1 - \frac{1}{p} \right)^I
 \]
- Adaptive attack
 - Attack when single message is transmitted is trivial
 - For N messages going simultaneously we have the following
 - Theorem: For $\log(N)N < Np$ following relation holds:
 \[
 \Pr \left[\max_{n=1}^{K} \frac{Np}{1 + 1.5, N \log (N) } \right] \leq \frac{1}{N}
 \]
 - Where $\max_{n=1}^{K}$ denotes number of learned messages and $p = \binom{n}{I}/\binom{n}{I}$

Summary and Extensions

- Secret sharing can employ some error correcting codes to improve robustness
- MAC sum can be attached in order to prevent modifications of transmitted message
- Parameter I is a trade-off between security and communication complexity
- I^2 is not much as even $I = 2$ is significant security improvement

\[\text{Created with IPython notebooks http://nbviewer.inkp.net/nbviewer/inkp.net/nbviewer/notebooks/inkp.net/nbviewer/notebooks/IPython/notebooks} \]