

Segment Document Protection

Kutyłow Gebal

Introductio

Key Structures

Tree-Based Key

Sequential Key

\_ -----

# Optimizing Segment Based Document Protection

Mirosław Kutyłowski Maciej Gębala

Wrocław University of Technology

SOFSEM 2012



## **Segment Based Document Protection**

Segment Document Protection

Kutyłow Gebal

Segmented Document Key Structures

Tree-Based Key Derivation

Sequential Key Derivation

inal remark

#### Motivation

- For confidentiality, data in a digital document may be encrypted
  - then only a reader with the decryption key may read it.
- However, not all information are equally confidential: for each part there is a different subset of people that have the right to read it.
- Auxiliary right management information can be nicely encoded in an XML-structure of a document.
- The things might become messy:
   many different document user profiles, each profile defining the read access right for all parts of the document.



## Segment Based Document Protection

Segment Document Protection

Gębala

Segmented Document Key Structures

Tree-Based Key Derivation

Sequential Key Derivation

Final rema

#### Trivial solution

use a different encryption key for each part (segment)

## Disadvantage

if a user has the right to many segments, then many keys must be given to him.

$$A = \{K_1, K_2, K_3, K_4, K_5, K_6, K_8\}$$

$$B = \{K_2, K_4, K_5, K_7, K_8\}$$

$$C = \{K_3, K_5, K_6, K_7, K_8\}$$

$$D = \{K_4, K_7\}$$



## Segment Based Document Protection access graph for a document

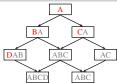
Segment Document Protection

Kutyłow Gebal:

Segmented Document Key Structures

Tree-Based Key Derivation

Sequential Key Derivation


Final remarl

## Access graph G

- Nodes of *G* segments of the document.
- There is an arc AB in G, if all users having access right to A have also access right to B.
- Each node is labeled by the key used to encrypt that segment.

Well designed G is acyclic.

A user having access right to a segment *A* has also access right to every *B* such that there is a directed path from *A* to *B*.





## Dags and Key Derivation Techniques one-way derivation of keys

Document Protection

Kutyłow Gebal

Segmented Document

Key Structures

Tree-Based Ke

Sequential Key Derivation

Final rema

### Goal

reduce the number of keys that need to be given to a user.

#### Linear scheme

If the access graph defines a linear ordering  $A_1 \succeq A_2 \succeq \ldots \succeq A_m$ , then the corresponding keys may be derive with any one-way (hash) function H. Choose a key  $K_1$  at random and for  $i=2,\ldots,m$  derive

$$K_i \leftarrow H(K_{i-1})$$

## Advantage

It suffices to give a user the key  $K_i$ , where i is the smallest number such that the user has the access right to  $A_i$ .



## Dags and Key Derivation Techniques

Segment Document Protection

Kutyłows

Introduction
Segmented
Document

Key Structures

Tona Daniel K

Sequential Key

#### Tree schemes

If the access graph is a tree, then a similar solution applies:

If a node A has child nodes  $B_1, \ldots B_k$  and a key K has been assigned to A, then to  $B_i$  ( $i \le k$ ) we assign the key

$$K_i \leftarrow H(i, K)$$



## Dags and Key Derivation Techniques schemes for arbitrary dag

Segment Document Protection

Gęba

Introduction Segmented Document

Key Structures
Problem States

Tree-Based Ke

Sequential Key Derivation

Final remar

### Arbitrary dags - technique 1

For a dag P describing the access rights find a mapping  $\rho: P \to N$ , such that  $A \succeq B$  iff  $\rho(A)|\rho(B)$ .

Use a multiplicative group  $\mathbb{G}$  such that computing the roots in  $\mathbb{G}$  is infeasible (e.g. use RSA Assumption).

Choose an element  $g \in \mathbb{G}$ , and compute  $K_A \leftarrow g^{\rho(A)}$  as the key for node A.

If  $\rho(A)|\rho(B)$ , then  $K_B \leftarrow K_A^{\rho(B)/\rho(A)}$ .

Disadvantages: high computational complexity, low flexibility.



## Dags and Key Derivation Techniques schemes for arbitrary dag

Segment Document Protection

Gębal

Introductio Segmented Document

Key Structures

Tree-Based Ke

Sequential Key Derivation

Final remark

## Arbitrary dags - technique 2

- Use an arbitrary tree scheme this leads to conflicts when a node v has more than one incoming arcs.
- If the key of node C should be  $K_C$  and the computation for an arc (B, C) yields  $K_B$ , then define the offset for arc BC as  $K_C$  xor  $H(K_B)$ . Then:

$$K_C = H(K_B)$$
 xor offset for BC

The offset is the public information corresponding to the arc included in the document.

$$egin{array}{c|cccc} A & B & & & & & & \\ \hline K_C = H(K_A) & C & K_C = H(K_B) \ xor \ K' & & & & & \\ \hline \end{array}$$



## **Problem Statement**

Segment Document Protection

Kutyłowsk Gebala

Segmente Document

Tree-Based Ke

Seguential Kev

Derivation

inal remark

In the segmented document we have to describe:

- key derivation method for each arc of the access graph,
- offset, if it is necessary for a given arc.

## Our goal

Find solution with low space overhead of the document encoding and small computational requirements.

Eliminate as many offsets as possible!



## **Problem Statement**

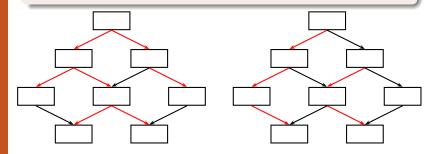
Segment Document Protection

Kutyłows Gebala

Introduction

Segmente Document

Problem Stateme


Tree-Based Ker Derivation

Sequential Key Derivation

Final remark

## Idea:

for tree method: embed a tree or disjoint trees in *G* for path method: embed a path or disjoint paths in *G* and use the offsets only for those edges that are not covered by the embedding.





## **Problem Statement**

Segment Document Protection

Kutyłow Gebal

Document
Key Structures
Problem Stateme

Tree-Based Ker

Sequential Key Derivation

Final remark

### Problem 1

Given a dag G, embed some number of trees in G so that

- the embedded trees are node disjoint,
- the number of arcs that do not belong to any of embedded trees is minimal.

### Problem 2

Given a dag G, embed some number of paths in G so that

- the embedded paths are node disjoint,
- the number of arcs that do not belong to any of embedded paths is minimal.



## Tree-Based Key Derivation algorithm

Segment Document Protection

Kutyłowsk

Introduction
Segmented
Document
Key Structures
Problem Statemer

Tree-Based Key Derivation

Sequential Key Derivation

Denvalion

Input: a dag G

**Output:** a subgraph G' of G that consists a set of disjoint trees and containing the maximal possible number of arcs

**Algorithm:** Construct a reduced graph G', a subgraph of G, in the following way:

for each node  $v \in G$  of indegree greater than 1 pick up an arbitrary arc with endpoint v and remove all other arcs with endpoint v.

### Proposition 1

The number of arcs in G' does not depend on choices done during algorithm execution. Moreover, no forest embedded in G may contain more arcs than G'.

So for the tree method, finding an optimal embedding is straightforward.



## Sequential Key Derivation situation

Segment Document Protection

Kutyłowsk

Segmented Document

Key Structures

Tree-Based Ke

Derivation

Sequential Key Derivation

Final remarks

## for paths the greedy algorithm mail fail to find an optimal solution:









## Sequential Key Derivation algorithm

Segment Document Protection

> (utyłows Gebala

Introduction
Segmented
Document
Key Structures
Problem Statemer

Tree-Based Ker Derivation

Sequential Key Derivation

Final remarl

The problem can be solved by finding a **minimal vertex-disjoint path cover** in a directed acyclic graph.

A vertex-disjoint path cover in a DAG G = (V, E) is a set of paths P such that every vertex in V is included in exactly one path in P. Paths may start and end anywhere, and they may be of any length, including 0. A minimum path cover of G is a path cover containing the fewest possible paths (i.e. maximum possible edges).

Solution by reduction to **maximum flow problem** thus complexity O(|V||E|).



## Final Remarks open problems

Document Protection

Kutyłow Gębal

Segmented Document

Problem Statemer

Tree-Based Key Derivation

Sequential Key Derivation

Final remarks

### Taking frequency into account

Known: the fraction of users that will have access to a given

node of the access graph.

Process: for each user create the subdocument with only

those segments that are accessible by him

Optimization: minimize the total volume of subdocuments

### Tree-based scheme

The modified algorithm selects an arc with endpoint v which is used most frequently. **This constructs an optimal solution.** 



## Final Remarks open problems

Document Protection

> Kutyłow: Gebala

Introduction
Segmented
Document
Key Structures
Problem Statemen

Tree-Based Key Derivation

Sequential Key Derivation

Final remarks

### Sequential scheme - open question

A similar argument cannot be used for finding optimal paths.

The reason: selecting an arc in our scheme does not change the number of arcs in the optimal solution, but changes a lot the shape of all paths in the final solution. As each decision has global consequences, it is unclear how to make an optimal choice.

#### Solution

Solution by reduction to **maximum weighted bipartite matching** thus complexity  $O(|V|^2|E|)$ .



Segment Document Protection

Kutyłowsk Gebala

Introductio

Segment Documen

Key Structures

Troo Based Ke

Derivation

Sequential Key Derivation

Final remarks

## Thanks for your attention!